Maximum principle for stable operators
نویسندگان
چکیده
We prove a weak maximum principle for nonlocal symmetric stable operators including the fractional Laplacian. The main focus of this work is on minimal regularity assumptions functions under consideration.
منابع مشابه
Remarks on the Strong Maximum Principle for Nonlocal Operators
In this note, we study the existence of a strong maximum principle for the nonlocal operator
متن کاملMaximum Principle and generalized principal eigenvalue for degenerate elliptic operators
We characterize the validity of the Maximum Principle in bounded domains for fully nonlinear degenerate elliptic operators in terms of the sign of a suitably defined generalized principal eigenvalue. Here, the maximum principle refers to the property of non-positivity of viscosity subsolutions of the Dirichlet problem. The new notion of generalized principal eigenvalue that we introduce here al...
متن کاملUniform Boundedness Principle for operators on hypervector spaces
The aim of this paper is to prove the Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear operators and hence strong linear operators on Banach hypervector spaces. Also we prove the continuity of the product operation in such spaces.
متن کاملA Generalized Maximum Principle for Boundary Value Problems for Degenerate Parabolic Operators with Discontinuous Coefficients
In [14] M.G.Platone Garroni has extended the classical generalized maximum principle (see, for instance, [15]), when the coefficients of the operator are discontinuous, to subsolutions of elliptic linear second order equations with mixed type boundary unilateral conditions, that is, on a portion of the boundary ∂Ω of Ω, the values of the solution are assigned, while on the other part a unilater...
متن کاملGradient Maximum Principle for Minima
We state a maximum principle for the gradient of the minima of integral functionals I (u)G Ω [ f (∇u)Cg(u)] dx, on ūCW 1,1 0 (Ω ), just assuming that I is strictly convex. We do not require that f, g be smooth, nor that they satisfy growth conditions. As an application, we prove a Lipschitz regularity result for constrained minima.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 2023
ISSN: ['1522-2616', '0025-584X']
DOI: https://doi.org/10.1002/mana.202200354